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The variation of X-ray Bragg-reflexion properties of uniformly bent and mosaic-

imperfect crystals is systematically explored within the framework of the Takagi-

Taupin equations by using spherical-wave boundary conditions. For simplicity,

consideration is restricted to centrosymmetric crystals with zero anomalous dispersion,

although the methods used are quite general. For uniformly bent crystals, the diffrac-

tion properties are explored as functions of the bending radius, R, and the asymmetry

parameter, # = cot 0y tana, where 0 is the Bragg angle and « is the asymmetry angle.

For mosaic crystals, the diffraction properties are explored as functions of (i) the

‘ block size (assumed uniform), ¢, (ii) the standard deviation of the mosaic-block tilt

o distribution, oy, (iii) the standard deviation of the mosaic shift distribution, o, and

(iv) the asymmetry parameter, #. From these results, strong evidence is obtained for

the universal nature of the asymmetric limits as zero-extinction (kinematical) limits,

and, moreover, that the limits are attained in such a manner that the imperfect-crystal

result (for intensity along the surface and therefore also for the integrated reflectivity)

first tends asymptotically to the corresponding dynamical-theory result for a perfect
crystal, before finally tending to the kinematical value in the limit.

The relevance of the present work to the conventional approach to the extinction
problem is discussed, and various limiting cases of the general mosaic-block model
(g.m.b.m.) are explored. In particular, pure primary and secondary extinction are
considered. On the problem of understanding the diffraction behaviour in the asym-
metric limits, an examination of the results suggests that the conventional classification
scheme for types of extinction is incomplete and that a third type of secondary extinc-
tion, at least, should be added to the classification scheme. This third type arises owing to
angular spreading-out of the diffracted beam as it passes through the crystal, and the
possibility of its occurrence is excluded in the formulation of the Darwin transfer
equations. '
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DIFFRACTION FROM IMPERFECT CRYSTALS 277

1. INTRODUGTION

The complicating effect of dynamical scattering (or extinction) on the determination of structure-
factor values from X-ray diffraction reflectivities has been appreciated since the earliest days of
such measurements. In two classic papers, Darwin (1914 4, ) proposed two theories to describe
X-ray diffraction reflectivities. The first (Darwin 19144), later referred to as the kinematical
theory, involved single scattering from the primary beam which was attenuated only by absorp-
tion as it passed through the crystal. This theory had the physically unobtainable result that, for
a sufficiently thick crystal, the reflectivity could exceed unity. Darwin then proposed a second
theory, subsequently designated the dynamical theory, which treated the amplitude coupling
between the transmitted and diffracted beams as they passed through an assumed perfect crystal.

Neither theory, however, was capable of describing adequately the integrated reflectivity data
for rock-salt obtained by Bragg et al. (19214, b), especially for the strongest reflexions. Darwin
(1922) appreciated that the problem lay ‘in the imperfections of the crystals and [that] this
introduces many complications’. In this third classic paper, Darwin gave a general treatment
of X-ray diffraction from imperfect crystals which has provided the framework for nearly all
subsequent theoretical approaches (see, for example, Werner & Arrott 1965; Werner ¢f al. 1966;
Zachariasen 1967; Becker & Coppens 1974) to the extinction problem in crystallography. In
this work, Darwin (i) introduced the mosaic-block model of crystal structure, (ii) elaborated the
concept of extinction, which he subdivided into primary and secondary contributions, and (iii)
developed the intensity-coupling equations for calculating the effect of secondary extinction.
Darwin also presented solutions to the transfer equations for some cases and, in particular, for the
asymmetric Bragg case (his equation (7.2)).

Applications of the Darwin approach to small crystals have been made by Zachariasen (1967)
and Becker & Coppens (1974), and their results are widely used in structure-factor refinements.
However, the effects and the domain of validity of many of the assumptions made in these
theories are difficult to assess. Moreover, their methods are essentially directed towards the aim
of correcting for the effect of extinction by modelling the inner morphology of the crystal specimen.
Recently, Mathieson (1976, 19774, b, 1979 a) has outlined a general approach to the extinction
problem which is directed towards the elimination of extinction by experimental means. The
approach is based on the identification of universal limits where the integrated reflectivity
attains the kinematical value (i.e. an extinction-free limit) independent of the structural state
of the crystal, so that by making a series of measurements under controlled variation of an
appropriate physical parameter, followed by extrapolation of the data to that limit, one can, in
principle, obtain extinction-free estimates for structure-factor values (Mathieson 19794). In this
approach, attention is focused on the level of interaction rather than on the structural state of the
crystal.

While the existence of universal extinction-free limits has been confirmed theoretically for
perfect crystals (see, for example, Wilkins 19784), the identification of universal extinction-free
limits for imperfect crystals is still in need of detailed study. The present work is specifically directed
towards studying the nature of X-ray diffraction from imperfect crystals within the framework
of the Takagi-Taupin equations (see § 3). Special attention is given to the behaviour of extinc-
tion as a function of various parameters and, in particular, results (see §§ 7 and 8) for the behaviour
of the level of extinction as a function of the degree of asymmetry (see figure 1) are presented for
a range of imperfect crystal states. Mathieson’s (1976, 1977 5) postulate that the asymmetric limit

20-2
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278 S. W. WILKINS

is in fact a universal extinction-free limit, which was originally demonstrated for perfect crystals
(Hirsch & Ramachandran 1950; Mathieson 1977 b; Wilkins 1978 4, hereafter referred to as WI)
is confirmed numerically for a large class of imperfect-crystal states (see §§ 7 and 8; a preliminary
account of some of these findings was given by Wilkins (1980), hereafter referred to as WII).

(a) negative asymmetry (b) symmetric case (¢) positive asymmetry
a<0,4<0 a=0,=0 a>0,>0

Seo—N
S,

Ficure 1. Bragg-reflexion scattering geometry for a semi-infinite crystal
with an incident plane wave.

The present work, which invokes coherent dynamical diffraction from imperfect crystals,
provides valuable insight into the functional dependence of extinction on the particular path
through the crystal (see § 8) and also provides data which may be used to check the accuracy and
range of applicability of available extinction theories (e.g., Zachariasen 1967; Becker & Coppens

1974; Kato 19764, b, 1979, 1980).

2. NoTAaTION

For convenience, a glossary of the principal symbols used in the present work is given below:

General

(i) A single-bar superscript, for example as in 7, denotes that the quantity is measured in
units of |kg|™t.

(ii) A double-bar superscript, for example as in %,, denotes that the quantity is measured in
units of |H|~.

Basic physical parameters

wavelength of X-rays in vacuum

electronic charge

electronic mass

velocity of light

volume of unit cell (cm?)

polarization factor; K = 1 for the component normal to the plane of diffraction and
K = |cos 20| for the parallel component.

SR B

Angles and indices
Oy Bragg angle (always assumed positive)
o acute angle between crystal surface and reflecting planes (positive if the reflected beam

is concentrated, see figure 1)
H stands for %4l reflexion, where A&l are Miller indices
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DIFFRACTION FROM IMPERFECT CRYSTALS 279
Asymmetry parameter
B =cotOgtana (—1<pB<1)

Coordinates

(s0,Su) oblique coordinates measured from entry point of spherical wave on surface and taken
along directions of propagation of O and H beams, respectively (see figure 2)

(%9,y5)  Cartesian coordinates taken in the plane of diffraction parallel and perpendicular to the
Bragg planes, respectively (see figure 2)

(%0, *p) oblique coordinates perpendicular to the O and H beams, respectively

Yu coordinate perpendicular to the plane of diffraction

£ distance along surface (see figure 2)

Structure factor and related parameters

Fy structure factor of index H

Vu = —¢2Fz A2 /nmc®, Fourier component of index H of 4n times the polarizability
Ky = AKe2 Fy /mc®v = —nifrg /A

Mo = 2k = — 215 /A, linear absorption coefficient

o = po/ k| = — 28,/ (1 +£2)%, reduced linear absorption coefficient

gt = —2|ky|/to(1 +£2)%, level of interaction in the symmetrical Bragg case (see WI)
P path length through the crystal as given by (4.11) and (4.12)

b angular factor in path length as given by (4.11) and (4.12)

£ = K/K11, anomalous dispersion parameter

Diffraction quantities
dy,dy  field amplitudes inside crystal of forward-diffracted and diffracted beams, respectively

Dy, Dy field amplitudes outside crystal of beams travelling in forward diffracted and diffracted
beam directions, respectively

D amplitude of the spherical wave as given by (4.2)

i, o displacement current at P, in direction 4,

P spherical wave integrated reflectivity as defined in (4.4)

P plane wave integrated reflectivity as defined in (4.5)

P random phase integrated reflectivity as given by (4.8)

1(0) = |Dky /sin 2032, intensity at £ = 0 (intensity in kinematical approximation with zero
absorption)

Yext = 1 —p/pxin, extinction factor

Q integrated power diffracted per unit volume per unit intensity in the kinematical
approximation as given by (4.14)

Q' effective value of @ in the presence of primary extinction

Eu extinction distance along the surface of the crystal and is given by (6.3)

A pathlength parameter in Zachariasen’s treatment of the dynamical theory for a perfect

crystal and is given by (9.2)
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Structural quantities entering the Takagi—Taupin equations

u(sy,sy) displacement of medium at field point (s, sy)
u, component of medium displacement parallel to H
Gy = 2nH-u(sy, 5y1), lattice phase factor

Structural parameters for imperfect crystal models
(i) General

b pairwise lattice phase correlation function as defined by (5.2)
(1) Uniformly-bent crystal
R reduced radius of curvature

(ii1) General mosaic block model

¢ side-length of the mosaic blocks in the plane of diffraction
Op standard deviation of the tilt distribution of the mosaic blocks
o standard deviation of the shift distribution of the mosaic blocks

3. THEORY OF DYNAMICAL DIFFRACTION FROM IMPERFECT CRYSTALS

The rigorous treatment of X-ray dynamical scattering from an imperfect crystal is a difficult
problem. Kuriyama (1970, 1972) and Kuriyama & Miyakawa 1970) have made valuable
contributions to this field via a quantum field-theoretical formulation of the problem. However,
the numerical solution of Kuriyama’s equations would seem to involve a large amount of com-
puter time compared to the more approximate Takagi-Taupin equations (Takagi 1962, 1969;
Taupin 1964; Kuriyama 1972), since Kuriyama’s equations involve an extra angular variable
describing the spreading-out of the diffracted beams due to crystal imperfections. For certain
classes of models of an imperfect crystal, and particularly, for crystals containing slowly varying
inhomogeneous strains or for crystals consisting of perfect-crystal mosaic blocks (the main class of
imperfect crystal studied in this paper), one can expect the solution of the Takagi-Taupin
equations to be very close to the correct solution. For mosaic block models, one might understand
this to be so (see also Kuriyama 1972), because the Takagi-Taupin equations are essentially
correct for a perfect crystal, and so should correctly treat the scattering within perfect-crystal
mosaic blocks, while the boundary conditions between blocks may be incorporated via, say, an
appropriate numerical solution procedure for the equations, as in the present work.

Recently, Kato (19764, 5; 1979) has shown that the Takagi-Taupin equations can be used to
provide a unified treatment of primary and secondary extinction. In particular, Kato showed
that for different values of the correlation length between lattice distortions, 7, one may obtain
the perfect-crystal result (for 7 — o0), the ideally imperfect crystal result (for 7 — 0), and a set of
intensity-coupling equations (for 7 small).

The work of the foregoing authors suggests that the Takagi~Taupin equations should provide
a sound basis for treating dynamical scattering from a wide class of imperfect crystals, and in
particular for investigating the trend in X-ray diffraction properties from imperfect crystals in
the approach towards the asymmetric limits.

The form of the Takagi~Taupin equations with which we shall work is

0dy/0sg = ik_g exp (iIGy) dy, (3.1a)
0dy [Osy = iky exp (—iGy) do, (3.18)
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DIFFRACTION FROM IMPERFECT CRYSTALS 281

where d, and dy are the wavefields of the direct and Bragg-reflected waves respectively, and &y is
related to the structure factor Fy; and the polarizability per unit volume, by

AK e
Kg = —

T
” m—czFH=_XWH (3~2)

(A is the wavelength, K the polarization factor, » the unit-cell volume, ¢, m and ¢ the usual con-
stants, and «}; and «j; are the components of ky arising from the real and imaginary parts,
respectively, of ¢(r) which is 4n times the real-space polarizability).

A

source diffracted beam to detector
incident spherical

wave

R /

fine slit {B'*'“

e Mo

Bragg planes

grid spacings ‘ Xy
ds

3sg

F1Gure 2. Scattering geometry in the plane of diffraction for the asymmetric Bragg case with an incident spherical
wave. Also shown are multiple scattering paths in the crystal. The oblique dashed lines (‘event lines’)
indicate loci of equal path length in the crystal; the numerical solution is propagated perpendicular to these
lines. The vertices of the scattering paths occur as evaluation points in the numerical solution procedure.

The lattice phase factor Gy for the reflexion H is given by
Gu(so,su) = 2nH u(so, sy), (3.3)

where u (s, syy) is the displacement of the medium at the field point (so, s;). The choice of sign
for the lattice phase factor in (3.1) and (3.3) is such as to conform with the definition of the
structure factor as the Fourier transform (rather than the inverse transform) of the unit-cell
electron-density distribution. It may be noted that a position in the plane of diffraction is
specified by the oblique coordinates (sq, 5y;), the axes being taken along the directions of pro-
pagation of the O and H beams, respectively (see figure 2).

The equations (3.1) are the form of the Takagi-Taupin equations developed by Kato (1973),
and will henceforth be called the T-cquations. The details of the derivation of these equations
together with the assumptions involved may be found in the papers of Takagi (1962, 1969),
Taupin (1964), Kuriyama (1972) and Kato (1973). For our purposes, it is sufficient to point
out that the following assumptions arc involved in deriving (3.1): (i) the incident beam is
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monochromatic, (ii) the two-beam approximation is valid, (iii) the quartic dispersion relation
may be approximated adequately by the usual quadratic form, with a consequence that the
possibility of specular reflexion is excluded, (iv) the two components of polarization may be
treated separately.

(a) Symmetry properties of the T-equations
(1) Uniform translation of the medium

Ifthe medium is displaced by a uniform translation @, then from (3.3) this leads to phase factors
exp (2niH-a) and exp (— 2niH - a) on the right sides of equations (3.1a) and (3.15), respectively.
Furthermore, if these phase factors are associated with the coupling constants « in the respective
equations, then one may equally well describe the displacement of the medium as a shift in the
origin of the unit cell by —a, involving the following transformation of the unit-cell coupling
constant: kg = kg exp (—2niH-a).

Such a change in origin of the unit cell will have no effect on measured intensities, although the
phase of the diffracted beam may be affected (this can readily be seen, for example, from
equations (14) of Kato (19764a)).

(ii) Complex conjugation and wavevector reversal

In quantum mechanics, the time-reversal operation and complex conjugation are very closely
related (see, for example, Messiah 1965, p. 671). Similarly, the effect of complex conjugation on
the T-equations is closely related to the reversal of the wavevectors of the forward and diffracted
beams.

More specifically, if d, (s, sg) together with di(so, sy) 1s a solution to (3.1), then

d5(56,5k) = dii(—sw> —50);  di(s6, k) = d5(—sm, —50) (3.4)

is also a solution to (3.1) (cf. equation XV.721in Messiah (1965)), where the superscript r denotes
the wavevector-reversed solution and coordinates, and an asterisk denotes complex conjugation.
Simply, this solution corresponds to running the scattering problem backwards (see figure 3).

P/
Ficure 3. Scattering arrangements for a solution, (a), and the corresponding wavevector-reversed solution, (b),
with sources denoted by the letter S and observation points denoted by the letter P.

(iii) Reciprocity and microscopic reversibility
Closely related to the idea of wavevector reversal is the so-called reciprocity theorem. This
theorem was introduced in optics by Lorentz (1gos) and later introduced into the X-ray diffrac-
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DIFFRACTION FROM IMPERFECT CRYSTALS 283

tion context by von Laue (1935). Essentially the theorem states (see, for example, Kato 1968)
that, when a radiation source having a direction h, of polarization and located at P, excites a
current J{P , at Pyin a direction h,, then a1adiation source of the same strength and of direction
h, of polarization, located at Py, excites a current J§2  at Py, in the direction b, i.e.

2 .
Thip, = Jil e (3.5)

no other component of current is excited at Py, except in the direction k;. Moreover, when P; and
P, are both outside the crystal (as in this work), the result holds in the presence of absorption; if,
as in von Laue’s treatment, the currents at points P; and P, arise only from the displacement
current (1/4rn) 0D /ot then, for a monochromatic wave, (3.5) is equivalent to the equation

Dfi)v, = DfYle, (3.6)

It should be noticed from (3.6) that the field amplitudes, for the two configurations discussed, are
equal in amplitude and phase. An illustration of the reciprocity theorem is given in figure 4.

FI1GURE 4. Scattering arrangements for (a) a solution with a spherical wave emanating from P, and the diffracted
amplitude detected at P,, and () a solution involving the reciprocal arrangement with the source at P, and
the diffracted amplitude detected at P;. The thicker-line scattering paths indicate possible scattering paths
between P; and P,, and are the same in (a) and (b).

A stronger version of the reciprocity theorem has been established by Moodie (1972) for many
beam electron diffraction through a perfect-crystal plate. Moodie extended the reciprocity result
to individual scattering processes (diagrams) and was able to show that, to every individual
scattering processin an arbitrary orientation, there exists a process in the reciprocity configuration
equal in amplitude and phase.

Itis not difficult to see that a similar result also obtains within the framework of the T-equations
for X-ray diffraction from imperfect crystals. Briefly, after Kato (19764), one may write, for the
amplitude of the diffracted beam at the exit point (5§, s§;), the expression

dy (55, $tr) = %B{{ exp (iQg), (8.7)
where the amplitude for the scattering path R is
Bit = (D/8sysin 20y) (ixy 8sy) (— Ky 831Ky 850)" (3.8)
and the phase for the scattering path R is

QR = "G<~V(1), 0) "‘G(S%), 5%[) — oo + G(sh, 51r) — G(s6, sT) (5{)“ =50), (3.9)

21 Vol. 299. A
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with 3s, and 8sy being the grid-spacing vectors along the transmitted and diffracted beam
directions, respectively, D being the amplitude of the incident spherical wave (see equation (25),
Kato (19764) and also equation (4.2«) in the present work), and r denoting the number of
scatterings in the path R from the diffracted-beam into the transmitted-beam direction. If one
defines the reciprocity configuration (see figure 4) by interchanging the point of entry of the
incident beam and the point of emergence of the diffracted beam, one then has that the direction
of the diffracted beam in the original configuration is opposite in sense to that of the incident beam
exciting diffraction in the reciprocity configuration, so that one has the transformation

— — §gL:Ce
88g = — Oy = 8% ,} (3.10)

38y —> — 088y = OS>,

with the superscript r.c. denoting quantities in the reciprocity configuration. It immediately

follows from (3.8) and (3.10) that
BY = (BY)re, (3.11)

provided the amplitudes of the incident spherical waves are equal in the two cases. Moreover, it
follows from (3.9) that the phases will be equal provided the phases of the incident beams are
equal, since the same vertices occur in (3.9) in each case (see figure 4), and the order in which they
are encountered (i.e. forward or backward) does not affect Q. Note, for a finite thickness crystal,
this result does not imply that the forward-diffracted amplitude emerging from the lower surface
of the crystal is equal in each case.

The principle of reciprocity outlined above is analogous to the principle of microscopic
reversibility in quantum mechanics (see, for example, Messiah 1965, p. 673). The reciprocity
principle has proved very useful in helping to understand various diffraction problems. For
example, in electron diffraction it has been used to devise tests for symmetry operators via con-
vergent-beam studies (Pogany & Turner 1968; Goodman 1975). In X-ray diffraction it has been
used, for example, to relate intensity distributions in traverse-type topographs and section-type
topographs (Kato 1968; Petrashen & Chukhovskii 1978). Application of the reciprocity principle
will be made in § 4 of the present work to show the equality of mean integrated reflectivities for the
positive and negative asymmetry cases.

(b) Parametrization of the T-equations for a centrosymmetric crystal

The form (3.1) of the T-equations is especially suited to spherical-wave boundary conditions
(see, for example, Kato 1975), which in turn provide a very convenient method for calculating
integrated reflectivities (see §4(¢)). To simplify the notation in what follows, we shall rewrite
equations (3.1) as

oy .Kk_y .

— = i—— exp (iGy) dg, 3.12a
%o <] p (iGy) dy ( )
ody . Kkp .

CH __ 3 TH — 125
T llKH exp (—iGy) do, (3 )

where (5o, 55) denotes that the coordinates (so,sy) are now measured in reduced units, |kg|=
Since the components of ky; arising from real and imaginary parts of {(r) are denoted by &y and
Ky respectively, then the reality of i (r) implies that

kg = (kp)* and &7y = (kp)* (3.13)
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(i) Anomalous dispersion
Moreover, if the anomalous dispersion parameter is taken to be
£=ru/cu (4] <&l (3.14)

and if consideration is restricted to structures possessing a centre of symmetry (and the origin of
the unit cell is taken at such a centre of symmetry) then one has

K}I = K_H = K%.I"l"'iK;{ = K:}I’*'i’(”_:u, (3.15)

with ky; and «j; both real and g, defined by (3.17). Thus, under these conditions, the coefficients
in the T-equations (3.12) are dependent on the unimodular quantities

Km _Kg_ 1+i€ - 1+i4
[cul  |xu]  sgn (k) (1+£3)F (1+43)¥

(3.16)

where the sign function in (3.16) may be ignored (i.e. taken equal to 1), since, if ky is negative,
its effect in (3.1) or (3.12) may be equated to that of a uniform displacement of the medium,
because ei* = e~I* = — 1 (see §3(ai)).

(i1) Normal absorption

The form of the T-equations given in (3.1) and (3.12) is for unit refractive index and zero
absorption, although absorption may very simply be included in the formulation of the equations.
This is not done here because it turns out to be more convenient in computations to introduce
later the absorption, in the equivalent manner that would be suggested by phenomenological
considerations (see §4 (¢)). In our notation, the reduced linear absorption coefficient is given by

Tio = tof | K| = — 280/ (1 +4£%)}, (3.17)

where , is the usual linear absorption coefficient and gg* is the level of interaction (in the sym-
metrical Bragg case) as defined by the second equality in (3.17) (see also WI).

4. BOUNDARY CONDITIONS AND GEOMETRICAL PARAMETERS

For the present work the scattering geometry is that of the Bragg case (see figure 1) and the
crystal will be taken to have a single mathematically flat surface (i.e. the crystal is semi-infinite in
the direction normal to the surface).

To avoid certain divergence problems in the calculation of integrated reflectivities (consider,
for example, the limit y7y > 0 in (4.13); see also WI), it will be assumed that the crystal has non-
zero absorption. This is not a severe restriction, however, since all real crystals have some finite
absorption.

(a) Asymmetry

An important geometrical parameter chosen for investigation in this study is the degree of
asymmetry. The asymmetry angle « is defined as the acute angle between the surface and the
mean orientation of the Bragg planes under consideration, such that for grazing incidence a < 0
while for grazing emergence o > 0 (see figure 1). The symmetrical case occurs whena = 0. Asin
our previous papers, the degree of asymmetry will be specified by the parameter

f =cotOytana, —-1<p<1. (4.1)
21-2
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Note that the natural limits of a are + 0, corresponding to # = + 1, and that, for a given suitably
cut crystal, the parameter £ can be varied continuously throughout this range by rotating the
crystal about the normal to the reflecting planes (see, for example, Mathieson 1975).

(b) Spherical-wave boundary conditions

For calculations the boundary conditions at the crystal surface will be taken to be those applying
to a spherical incident wave, in the form discussed, for example, by Kato (1961) and Saka et al.
(1972), namely

Do(s0,$u) = (D/sin 203) 8(syy) = D8 (x,), (4.24)
Dy (s0,0) =0, (4.2b)

where capital letters are used to denote wavefields outside the crystal, D is the amplitude of the
spherical wave and (xq, xy) are the coordinates perpendicular to the O and H beams respectively
(see figure 2), and are equal to sin (26g) (s, So). Note that expressions (4.2) are in fact mathe-
matical devices for calculating diffraction properties and should not be used to deduce incident-
beam properties (see, for example, Kato 1975). In practice, the spherical wave boundary condi-
tions are closely approximated for a conventional X-ray source when a fine slit (¢a. 10 pm) is
placed at a sufficiently large distance (ca. 1 m) from a very fine source, such that only one line of
the characteristic spectrum is able to satisfy the Bragg condition, yet the angular variation of
intensity in the incident beam is uniform over the full angular range of the rocking curve. The
resulting intensity distribution along the surface of the crystal (see figure 2) is called a section
topograph (see, for example, Authier 1977).

(¢) Integrated reflectivity
For a spherical wave source (4.2) at (x5, xy), let d§ (x5, X113 %0, x1) be the solution at (xp, x%;)
on the exit surface of the crystal. Then the corresponding plane-wave solution for unit incident
amplitude (D = 1) in the plane of diffraction is (Kato 1976 4)

dB (s, 5 Ko = ] iy exp (1K, xt) 4 (¥, s s €i1)s (4.3)

where K is the component of the wavevector K (| K| = 2n/A) in the plane of diffraction and lying
parallel to the x,-axis. Thus, the unit-incident-amplitude plane-wave solution is exactly the
Fourier transform of the corresponding unit-amplitude (see (4.2a)) spherical-wave solution.
Note, however, that we cannot assume ds; to be translationally invariant, since we intend to treat imperfect
crystals.

The vacuum wave field amplitude, say Dy (X, Xj1; %5, 451), at an observation point (X, Xy)
outside the crystal (all denoted by symbols with capital letters) differs only by a phase factor from
the crystal amplitude dy (x5, x51; x5, *11) at the corresponding exit point (x%, xf;) on the surface
of the crystal. Thus, based on Kato (1974, p. 323; 1976a), one may write for the spherical-wave
integrated reflectivity in the Bragg case considered here

P(E) = Asin (0 —a) f dg” dyy |d5(€7; €)]2, (4.4)
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and for the plane-wave integrated reflectivity
. b ,
ph = Asin (0= L [ a [ [ ag” ay i (e7s €)1 (4.50

= sin (05 —a) [ [ ag" dyulanes )1 (4.5)

with L - oo, where L is the extent of the plane wave along the surface (i.e. the £-axis in figure 2)
and yy refers to the axis perpendicular to the plane of diffraction. The expectation value intro-
duced in (4.5b) is the average over the entry points on the surface and is given, for a general
function F(§), by

1L
N 0] (4.6)
From (4.4) and (4.55), one has the relation
Pl = {Ph(€')) 1w (4.7)

between plane-wave and spherical-wave integrated reflectivities.

If spherical waves of the form (4.2) had been homogeneously distributed with a unit intensity
per unit length along the entry surface without any definite phase relation, one would also have
obtained the integrated reflectivity (denoted for this case by the superscript r.p.) as

Pi" = PH(E))rsec- (4.8)
This case is claimed by Kato (1976 ) to be the most realistic for conventional diffractometry, in
which the crystal is illuminated by a wide homogeneous beam.

If we now explicitly include the effect of normal absorption (since we have previously chosen
to formulate the T-equations in the absence of normal absorption) and if we assume negligible
spreading-out of the diffracted beam perpendicular to the plane of diffraction, we may write
the following expressions for the integrated reflectivities:

pir(§) = Asin (0 —a) L dg” exp (—popo " —&'|) |die(£"; &) (4.9)

and b= Asin(Oy-a) ([ A€ exp (—mpol€ €D |RE Y (10)

where the coordinate £ measures the distance along the surface of the crystal (see figure 2), and
the unique scattering path length p connecting £’ and £” is given by

p(E"—¢&'; Op, ) = [sin (205)]7* [sin (O — ) +sin (O + )] |§" — &'| (4.11)

= po(0p, ) [§"—&']. (4.12)

As a simple illustration of the application of (4.10), we consider the kinematical approximation

for which |d§;(£"; &) |2 = | Dk /sin 205]?, so that, for a sufficiently thick absorbing platelet treated
in the Bragg case, we have the standard result (James 1949)

D — S — Ab.D. . A IKlel 1 =1(1 Q 4.18
P11, xin = P, kin = PH, kin _Sin2013702 -B) = §( "ﬂ)%, (4.13)

where @ is the usual integrated power diffracted per unit volume per unit intensity in the kine-
matical approximation, and is given by

=_/_\_:_;K.2|Fn|2 Kl 2=/\.l’<11i2. (4.14)
v? sin 20y \mc? sin 20y
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(d) Extinction factor

A result, that conventionally provides a reference value for integrated reflectivity measure-
ments on imperfect crystals, is that of the integrated reflectivity of an ideally imperfect (or
perfectly mosaic) crystal (Bragg et al. 1926). While the concept of the ideally imperfect crystal
is itself imperfect (see, for example, Hart 1974, and Mathieson 1978), it is made operationally
meaningful by tying it to the integrated reflectivity, pxin, that would obtain if the simple kine-
matical approximation were valid. It is the ratio of an actual p to pxin which forms the basis for
a convenient measure of extinction, namely the extinction factor

ext = L—p/pxin; (4.15)

this coincides with the definition used in our previous work. For the present case of interest,
namely the thick-crystal asymmetric Bragg case, the appropriate form of pyin is (4.13) both for
plane-waves and for spherical waves. The behaviour of yex: forms a central area of investigation
in the present work.

For the asymmetric Bragg case being considered, the extinction factors corresponding to
(4.9) and (4.10) are explicitly given by

[, aerexp (= mp) (e €)1 (4.16)
* [xul®sin 205 /g [sin Oy +a) +sin (0, — )]

ytsrxt(gl) =1

|7 derexp (= op) dlan(e's €)1
 JKku|®sin 205, /u, [sin (Og +a) +sin (O —a) ]

and Yo = 1 (4.17)

respectively, so that 75t = {yaxt (&) DLsco- (4.18)

In deriving (4.16) and (4.17), we have used equations (4.9)—(4.13).

(¢) Symmetry with respect to reversal in sign of the asymmetry parameter

For perfect crystals it was pointed out in WI that Mathieson’s (Mathieson 1975, 1976, 19775)
conjecture, that p?/(1—/4) (or equivalently #&.) is even in f, is confirmed by conventional
dynamical theory for both the infinite and finite thickness cases. It may be noted {rom the
calculation leading from (4.10) to (4.13) that the factor 1 — S essentially arises as a result of the
cross-sectional area which the crystal surface presents to the diffracted beam.

One would like to know whether this symmetry result also applies to imperfect crystals. From
the results already established it is possible to provide an answer to this question, within the
framework of the T-equations, as follows.

First, we note that, if the asymmetry angle is « in a given scattering configuration, it will be —«
in the reciprocity configuration (see § 3 (¢iii)). Thus, by the reciprocity theorem for a given path R
in the crystal, for the same amplitude source in each case, we have that

(€7 &) = Iy (€5 &) = Ir(€5 €), (4.19)
where I+ and I~ are intensities calculated in the +o and —a asymmetry cases. Note that (4.19)

applies equally well in the presence or absence of absorption since the path length p is the same
for both the given configuration and the reciprocity configuration. For perfect crystals one may
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assume translational invariance of /i and I, and immediately go on from (4.19) to prove with
(4.17) (or (4.16)) that yexy is even in g.

However, for imperfect crystals one cannot assume translational invariance of I and /g with
respect to &, so that only the weaker result

(8" =€) i = IE*(E = &) = TR(E — £ (4.20)

applies, where the mean is taken with respect to positions of the source, which for a statistically
homogeneous medium will be equivalent to taking an ensemble average over crystal states for
a given value of the source position, §’.

Ficure 5. Positive, and corresponding negative, asymmetry cases for equal-width pseudo-plane-wave sources S+
and S-. The thicker-line scattering paths in the shaded region show the paths common to the two arrange-
ments, while the thin lines show scattering paths that sample different regions of the crystal in each case.

Therefore, from (4.16) and (4.20), we immediately have the result that the ensemble average of
Yoxt 15 tnvariant under reversal in sign of f. From (4.17) and (4.20), we have, in principle, that Yot 18
invariant under reversal in sign of 8, provided Lis sufficiently large, but in practice the necessarily
finite extent of the incident wave means that the invariance will also only apply to the ensemble
average of »0,;. Note that the invariance of the ensemble average of yex also applies if (4.8) is
used for p.

Simply then, we see that, although equality obtains between intensities for a given path in the
+aand —a configurations, different regions of the crystal contribute to p in the +a and —a cases
(see figure 5), so that gext or p/(1 — f) are invariant, under reversal in sign of g, for an imperfect
crystal only in the mean (the mean being either obtained via an ensemble average over crystal
states or over entry points on the surface).
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5. STRUGCTURAL MODELS FOR IMPERFEGCT GCRYSTALS

It is only in a few idealized cases that detailed quantitative descriptions can be given of the
precise structural state of a macroscopic real crystal. Such cases occur, for example, in syntheti-
cally grown Si single crystals having very low dislocation densities. In these crystals, the detailed
defect configuration and lattice distortions may be analysed by X-ray topography (see, for
example, Tanner 1976). More usually, the crystals studied in X-ray diffraction experiments
consist of a very dense network of dislocations and distortions, and a detailed description of the
structural state is impossible. At best, one might hope to describe an actual structural state in
statistical terms of the number, clustering, and orientation of various types of defects or in
terms of various displacement-displacement correlation functions (see, for example, Kato
19764, b).

In treating the elastic X-ray scattering from imperfect crystals via the T-equations, the only
way in which the state of perfection of the crystal enters the calculations is via the lattice phase
factor expiG (see (3.1) and (3.3)). Itis therefore central to the present aim of studying diffraction
from imperfect crystals to decide on some appropriate, yet tractable, models for expiG or, more
specifically, for the component of the continuum field-point displacement u lying parallel to H
(the only component of u that is relevant in these calculations). Since the topic of dynamical
diffraction from highly imperfect crystals is relatively unexplored, it seems sensible to consider
models for types of imperfect crystal that are simple enough to be easily described mathematically,
and yet to contain what are felt to be some of the essential components of the structural state of real
imperfect crystals. The first model considered is that of the uniformly bent perfect crystal, while
the second model considered is one involving a mosaic-block structure. The details of the models
are as follows.

(a) The uniformly bent crystal

One of the simplest deviations from the perfect crystal state is that of a uniformly bent perfect
crystal (the so-called uniform strain gradient case). For this model of a deformed crystal, analytic
solutions to the T-equations have been obtained by several authors; in particular solutions for
the Laue case have been obtained by Katagawa & Kato (1974), Petrashen & Chukhovskii
(1976), Chukhovskii & Petrashen (1977), and for the Bragg case by Chukhovskii e al. (1978).
The uniformly bent crystal is of particular interest because its state can be varied in a precise
and controlled manner. It is partly as a result of this property that bent crystals have found
widespread use as X-ray and neutron optical components such as monochromators (see, for
example, Kohra et al. 1978).

The uniformly bent crystal model may be defined in operational terms as follows. Imagine a
perfect crystal to be uniformly bent so that the Bragg planes become cylindrical surfaces with the
axes of the cylinders lying in a direction normal to the plane of diffraction. The surface of the
crystal is then ground, polished and etched until it is flat and undamaged. The angle between the
surface and the tangent to the Bragg surfaces at the point of entry of an incident spherical wave is
defined as the local asymmetry angle « (see figure 6).

Mathematically, the component of the displacement field parallel to the scattering vector H
in the uniformly bent crystal is given, to a sufficient approximation, by

= §R1x3, (5'1)
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where R is the reduced radius of curvature, %, is the reduced distance along the original undis-
torted Bragg planes, and a double bar over a symbol denotes that it is measured in reduced units
|H|-1 = A/sin Oy.

It should be noted that, for a ‘dynamically transparent’ crystal (i.e., £ = 0) the diffraction
properties are independent of the sign of R (see Chukhovskii ef al. 1978, p. 615).

source ¢
Sy
ﬂ\yz 01&%"'6/
incident S
/ beam diffracted
beam
1
So
6
B
%,
/Y d \\

Ficure 6. Scattering geometry and displacement field for the uniformly bent crystal models
in the asymmetric Bragg case with spherical-wave boundary conditions.

(i) Correlation function for the uniformly bent crystal

We note that the uniformly bent crystal is an inkomogeneous model of an imperfect crystal, but
with the simplifying property that the effect of translating the entry point along the surface of the
crystal is equivalent to altering the asymmetry angle. This can be seen by examining the basic
geometry (see figure 6). Useful parameters for describing the internal state of an imperfect
crystal are the lattice phase correlation functions (Kato 19765), the simplest of which is the
pairwise correlation function, defined by

S (Aso, Asy; 5o, ) = exp[iG (5o + ASo, S + ASy)] exp [ —1G (5o, Su) ]D- (5.2)
In the present model this correlation function is given trivially by
S (Aso, Asg; 0,0) = exp [~ $iR-1(Ado +Adg)?], (5.3)

with fixed reference point taken at the entry point, (0, 0) of the spherical wave. Thus, we can see
from (5.3) that the phase of f varies slowly for small (A§y, Asy), but oscillates very rapidly for
large values of (ASy, Asy).

Practically, the uniformly bent crystal case may be achieved either mechanically (see, for
example, Mathieson 1978) or by depositing an oxide layer on one side of a crystal plate (see, for
example, Hashizume & Kohra 1971). Experimental results for the integrated reflectivity from
uniformly bent crystals is contained in the work of Boeuf'et al. (1978) and references cited therein.
Some reasons for recent interest in studying bent crystals is in connection with the design of
monochromators for synchrotron radiation (Boeuf ef al. 1978; Kohra ef al. 1978) and the
dynamic focusing of X-rays (Petrashen & Chukhovskii 1976).

22 Vol. 209. A
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(b) The general mosaic block model (g.m.b.m)

In his seminal work on X-ray diffraction from imperfect crystals, Darwin (1922) assumed that
the atoms of an imperfect crystal were ‘arranged in blocks, each block a perfect crystal, but
adjacent blocks not accurately fitted together’. This model was partly chosen for mathematical
convenience as a discrete representation of a crystal involving inhomogencous strains. Notwith-
standing, mosaic block models have formed the basis for nearly all subsequent theoretical treat-
ments of extinction in X-ray and neutron diffraction from imperfect crystals (Zachariasen 1967;
Werner & Arrott 1965; Becker & Coppens 1974, see also Kato 19765, model 2), an exception
being the inhomogeneous-strain approach adopted by Kuriyama & Miyakawa (1970).

While the mosaic block model is obviously a highly idealized representation of the internal
structural state of most crystals, there are cases where the mosaic block model appears to have
direct physical manifestations (see, for example, Hirsch 1956; Barrett & Massalski 1966, p. 396,
and references cited therein; Moodie & Warble 1980). Essentially, a mosaic block model con-
centrates all the dislocations in a small volume of a crystal into dislocations at the block or grain
boundaries. Provided the blocks are not too large, this would seem a reasonable first approxima-
tion for use in the treatment of X-ray diffraction from real imperfect crystals.

In developing a mosaic block model for use in the present studies, we were guided by the
following criteria.

(1) Itwas considered desirable that the model parameters be such as to allow the crystal state
to be varied continuously from perfect to ideally imperfect states.

(ii) The model crystal should be statistically homogeneous, i.e. have mean structural pro-
perties independent of position in the crystal.

(iii) the crystal state should become ideally imperfect (i.e. gext — 0) as the block size goes to
Zero.

The general mosaic block model (g.m.b.m.) adopted in this work consists of the following
components.

(i) Block size £. The two-dimensional plane of diffraction is divided into square perfect-
crystal blocks with side length 7.

(ii) Block tilt o. The blocks are subject to an angular tilt about their centroids, which is
sampled from a symmetrical triangular distribution with standard deviation o.

(iii) Block shift 0. The blocks are subject to a displacement along the direction of the scattering
vector H by an amount relative to their neighbours, which is sampled from a symmetrical
triangular distribution with standard deviation o. The shifts at a given block are calculated as
the sum of independent random walks along the x,- and y,-directions, starting from an arbitrary
origin block.

A schematic representation of a given configuration of the crystal in the g.m.b.m. is presented
in figure 7. 5t should be noted that the blocks entirely fill the volume inside the bounding surfaces
of the crystal, with no inter-block voids.

Mathematically, the component of the displacement field © along the direction of the scattering
vector, H, is given in the g.m.b.m. by

_ 1 J o
g = X i+ 3 e+ (74 8) (7= 7), (5.4)

where I and J are the block-lattice indices along the x,- and y,-directions (parallel and perpendi-
cular to Bragg planes, respectively; sec also figure 7) of the block containing the field point (¥, 75).
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The coordinate x, denotes the distance from the origin along the direction of the Bragg planes,
with #7; being the x,-coordinate of the centroid of the block at block site (I, J). Note that, for
brevity, the subscript 2 is deleted from coordinates appearing on the right side of (5.4). The
indices ¢ and j run over the block-lattice sites from the origin to (7, J). The block shifts ¢ and ¢/
are generated from a uniform (square) distribution such that the resulting triangular distribution
of ¢f +¢f has standard deviation o. The sum of the ¢} + ¢/ produces a random walk, the distribu-
tion of the sum tending to normal as the number of steps becomes large. The tilts 7 and 5% are
also sampled from uniform distributions, and the resulting triangular distribution of 57 + 6% has
standard deviation op. The units chosen for the parameters o, and o, are such thatz, is measured
in units of |[H|~' = A/sin 6. The reason for choosing triangular distributions for the tilt and shift
distributions is simply one of convenience in the numerical treatment, and is not considered to
lead to specificity in any of the essential features of the results to be presented.

A

2

——
—
_\
—T

N
/__1‘...$ =
(o T i —— AN

~ \ S

FIGURE 7. Scattering geometry and displacement field for the general mosaic block model in the asymmetric Bragg
case with spherical-wave boundary conditions. The tilt of a given block is indicated by the direction of the
arrow (which is normal to the Bragg planes of the block). The magnitude of the shift of a block is indicated
by the length of the arrow while the sign of the shift is indicated by the sense of the arrow.

(i) Correlation function for the g.m.b.m.

The distributions for block tilting and shifting are independent, and the respective contribu-
tions to u, are separate, so we can work out the correlation functions for block tilting and shifting
separately. Adopting here the (x,,7,) coordinate system (see figure 7), we have the following.

Block-tilt correlation function

So(Fas ) = fo(It, JE) = 2B-1(—1+cos B+ BSi B), (5.5)
where B = /6 noy, HY, (5.6)
Si denotes the sine integral (Abramowitz & Stegun 1965, p. 231) and (7, J) is the difference in
block-lattice coordinates between the points in question. Note that f here is independent of
(%5, ¥5), since we exclude the case where both sites are in the same block. It immediately follows

from (5.5) that fi, — 1 as either oy or £ tends to zero, as might be expected.
22-2
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Block-shift correlation function
SolZo, 7o) = folIf, J?) = exp[ —n2HAI +J) 03] = exp [~ C(%,+72) /2], (5.7)
where C = n2H?%?2, (5.8)

and we have invoked the Central Limit Theorem of statistics to approximate the sum of several
independent, identically distributed random variables by a normally distributed random
variable. Note here, also, that f, -> 1 as o, - 0, as might be expected.

inside range of
origin block

0.5

total lattice phase
correlation function, f(x,, 0)

1

0 1 10 20
distance in crystal along x,-direction, ,//

Ficure 8. Plot of total lattice phase correlation function (given by (5.9)) along the x,-direction, for f;, = 0.75 and
for various values of C. The correlation function for %, < £ involves some correlation from within the
origin block, while for ¥, > £, only correlation between different blocks is involved.

Total correlation function. Combining (5.5) and (5.6), and taking account of the case where both
points in the correlation function lie inside the same block, we obtain for the total function in the
g.m.b.m. the result
(1 _EZ_[) (1 _l_?_/—ﬁl) 4 (l_fil ‘_y—2_|__ !’?2?72])fb(@ g2)j;:(7?2 372)
- ¢ ¢ 7 ¢ 7 ’ ’
JilZ,7,) = for 0 < |%)|, |7 <7 (5.94)
(

So( %o, s) fo(X,72) otherwise, 5.9b)

where the first term in (5.94) is the probability that points at separation (x,, #,) are in the same
block, while the prefactor in the second term in (5.94) is the probability that the points at
separation (¥,, ¥,) are in different blocks.

From the foregoing results we can immediately see that, while the g.m.b.m. crystal is certainly
statistically homogeneous, it is not statistically isotropic because (5.7) depends on /+J and not
on I2+ J2, Anillustration of the form of the correlation function is given in figure 8 and shows
that, at small separation distances relative to the block size #, the correlation is near unity and
is dominated by the intra-block contribution, while for large distances the correlation falls off
exponentially to zero owing to (5.7). That is, there is no infinite-range correlation in the g.m.b.m.
provided C # 0 (cf. Kato 1980).
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6. NUMERICAL SOLUTION METHOD AND FORMAT OF RESULTS

The numerical solution procedure for the T-equations adopted in this work is essentially the
same as that described by Authier ez al. (1968), with the following main differences: (i) boundary
conditions are those appropriate to the asymmetric Bragg case with a spherical wave originating
on the surface at (0, 0) in the (sq,sy) frame; (ii) the numerical iteration procedure makes use
only of the preceding values of the field variables dy, dy and Gy, and corresponds to method a of
Authier ¢t al. (1968, p. 130). In this case one has the recurrence formulae

do[(m+1) 850, ndsg] = do(mBso, ndsy) +i(k_u/|Kkul) 35 exp [iGy(mdsy, ndsy)] dg(mdso, nds),

(6.1a)

dy[mBsg, (n+1) 8sy] = dy(mbsq, ndsy) +1(kp/|kul|) dsy exp [ —iGy (mdsy, ndsy)] dg (mdsg, ndsy),
with the grid steps being given by (6.10)
350 Osy _ 28¢ 62)

sin (O —«) _ sin (0 +a)  sin 20’

so that grid points lie exactly on the surface. The slightly increased level of complication involved
in using the recommended method ¢ of Authier ¢f al. did not seem worthwhile in the present case,
because the function Gy in the g.m.b.m. is a discontinuous function of position, so the estimate of
accuracy for method ¢ which they give is probably not reliable. It may be noted that all the
methods a, b, and ¢ discussed by Authier ¢t al. have the advantage over more subtle methods that
they can be used to treat discontinuous Gy-functions.

The essential feature of the numerical soluticn procedure is that the equations (6.1) are
successively solved on ‘event lines’ (dashed lines in figure 2) yielding diffracted-beam amplitudes
on the surface at points 28 apart, and hence the diffracted-beam intensity profile /(£).

Suitable values of 8¢ for calculating 7 (£) profiles were established by comparing results (see WII)
with the corresponding analytical results obtained for a perfect crystal by Uragami (1969), and by
comparing results for imperfect crystals obtained with different values of 8£. The convergence of
spherical-wave integrated reflectivities for a particular value of zZ, (see (4.9)) was established by
dividing the integration process up into fixed-length segments (of, say, 160 points), with sequential
testing to see if the contribution from the last added segment to the integral was significant.
Typically, convergence of integrated reflectivities in this manner to better than 19}, was achieved
(see figure 4 in WII), and required from 640 to 960 points on the surface. One may note that the
form of (4.9) allows simple calculation of integrated reflectivities for arbitrary larger values of
%, from the known values of /(£) for zero absorption (i.e. one does not have to resolve the
T-equations).

For the g.m.b.m., configurations of the distorted crystal were generated from strings of random
numbers produced by the Fortran subroutine RANF on the CSIRO Cyber 76 computer. Unless
otherwise stated, the string of random numbers used was the same in each case.

Format of results. All results given in §§ 7 and 8 were calculated for a spherical wave originating
at (0, 0) on the crystal surface. The quantities plotted are I(£) and y5y for various values of i, £,
and the model parameters. In particular, results for f# = 0 and the representative extremely
asymmetric case, (1— %)% = 0.3, are compared in several graph tableaux (figures 9-13). A
crucial result in each tableau is the variation of 78 with (1 — £2)3.
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symmetric Bragg case, f = 0 asymmetric Bragg case, (1—f2)% = 0.3
intensity profiles along the surface
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FIGURE 9. Variation of diffraction properties for the uniformly bent crystal in both the symmetric case and a
representative extremely asymmetric case. All results are for 0y = tmand £ = 0.
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The intensity (section-topograph) profiles in each case are plotted in reduced form as I(£) /1(0)
against £/£y, where 1(0) = | Dky /sin 202, and £y is the extinction distance along the surface for
a perfect crystal in the Bragg case given by (Uragami 1969)

£y = mcosOp/[(1—p2)} |kyk_y|? cosa). (6.3)

7. RESULTS FOR THE UNIFORMLY BENT CRYSTALT

At the outset, it should be appreciated (see, for example, Chukhovskii e al. 1978) that the two
ideal limits of scattering are attainable in this model for appropriate limits of the reduced radius
of curvature, R, namely the dynamical limit (R — 00) and the kinematical limit (R - 0). Intensity
profiles corresponding to these ideal cases are plotted as solid curves in figure 9.

Figures 9a and 9b. The intensity profiles given in figure 94 for the symmetric case (# = 0) show
that, for all values of R, the intensity starts off at £ = 0 with the kinematical value, but follows the
dynamical profile to an extent depending on the value of R. The effect of increasing curvature
(decreasing R) is to raise the base level of the Pendellsung fringes and ultimately to increase their
spatial frequency (these fringes are manifestations of the waveguide property of diffraction in
bent crystals, see, for example, Chukhovskii ef al. 1978). At large distances from the source point,
the intensity again lies close tc the kinematical value. Similar results also obtain in the asymmetric
case, figure 95, although the decreased spatial frequency of the Pendellosung fringes relative to
the symmetric case (see (6.3)) means that attenuation due te normal absorption rapidly damps
out the fringes.

Figures 9¢ and 9d. Examination of figure 9¢ reveals the perhaps surprising result that, for a given
value of R, the level of extinction can be lower for low absorption cases than for high ones. The
explanation for this phenomenon lies in the fact that there are fwo regions where almost kinematical
values for I(£) are attained, as discussed above, namely for small and large £. In the case of low
absorption, an increased contribution to scattering is made by the large £ region, leading to a
possible decrease of yext. This effect is not evident in the asymmetric case (figure 94) because the
second kinematical region occurs at much larger values of & than for the symmetric case.

Figure 9e. Figure 9¢ shows the smooth asymptotic convergence of the various bent-crystal cases
to the corresponding perfect-crystal (dynamical-theory) result as the asymmetric limit is
approached. It may be noted that variation of yex; with (1 —£2)% need not be monotonic and,
again, this may be ascribed to the relative contributions made by the large- and small-£ regions.

Simple symmetry arguments, similar to those applied in § 3, may be used to show that (within
the framework of the T-equations) the results for /(£), and hence yext, for a uniformly bent
crystal are independent of the sign of R if k;; = «_yg;, which is the case in the present study (see
(3.15)).

8. RESULTS FOR THE GENERAL MOSAIC BLOCK MODEL
(a) Variation of g.m.b.m. parameters

In most practical cases, the state of a crystal is fixed but not precisely known, and its micro-
structure can usually only be altered imprecisely and haphazardly (for example, by annealing,
a-particle bombardment, thermal shock, polishing and etching,). Such practical techniques do

1 See note added in proof, p. 317.
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not permit one to study in a controlled fashion diffraction properties as a function of crystal
microstructural state, in, say, the approach to the ideally imperfect state (i.e. kinematical
approximation) or the perfect state (dynamical theory). It is possible, however, to make a con-
trolled investigation of diffraction properties as a function of crystal microstructural parameters,
within the framework of a theoretical calculation, and the present work provides a valuable
opportunity for such a study.

One should appreciate that, although ¢, o and ¢, are introduced as independent variables in
the g.m.b.m., the variation of any one of them does not necessarily lead to a change in the micro-
structural state characteristic of that variable alone. This can be seen, for example, by examina-
tion of the block-tilt correlation function (5.5) from which it follows that f is a function of the
block size, #, and, in fact, f, — 1 as - 0 for fixed op,. Naively, one might have expected the
system to become less correlated as £ —> 0 (with o, = 0) rather than more correlated; however,
a more careful appraisal in this case shows that £ — 0 implies the blocks become points, and a
rotation of a point involves no effective displacement of the medium. When o, # 0, one finds
that the total correlation function (5.9) is ultimately driven to zero by the block-shift correlation
function (5.7), although the tilt correlation function goes to unity. One might equally well have
chosen a different set of variables with which to describe the g.m.b.m. The particular choice of
parameters is essentially arbitrary, since the continuous variation of any one parameter does not
correspond to any particular physical operation that one can perform on a real crystal.

(b) General comments and observations on results

The figures 10-13 contain compact summaries of the effect on diffraction properties of
systematically varying the parameters ¢ (block-size), oy, (standard deviation of block-tilt distri-
bution), o, (standard deviation of block-shift distribution) and £ (the asymmetry parameter).
Reference curves also presented in these figures are: (i) for I(£) curves, the ideally-imperfect-
crystal (kinematical) and perfect-crystal (dynamical) intensity profiles for the same value of the
absorption coefficient (solid curves); and (ii) for yext against asymmetry parameter curves, the
perfect-crystal result.

(1) Hodupicosity

In all cases the results exhibit features that are idiosyncratic to the particular configuration
sampled. Nevertheless, the results also contain features that are representative of the general
behaviour of diffraction properties with these parameters (this aspect is investigated in § 8 (ai)).
Thefactthat yextis calculatedin the spherical-wave case means that theidiosyncratic behaviour of
diffraction with specific crystal microstructure (for the same values of the statistical parameters 7,
op and o) is extemely severe. At the other extreme of variability with configuration, in the true
plane-wave case (L — coin (4.10)), the extinction depends only on the mean microstructural state
of the crystal, since the plane-wave case averages over an ensemble of spherical-wave cases (i.e.
(4.50) with L — 00). In practice, the incident beam has finite lateral extent, and so idiosyncratic
behaviour of extinction with path (see, for example, Mathieson 1977¢) and sampling volume of
crystal (see, for example, Schneider 1977) is inevitable. This phenomenon has been named the
hodupicosian (from the Greek hodos meaning path and upicos meaning dependence) character of
extinction by Mathieson (19795).

In the figures for y.xt presented in this section, the individual data points are presented together
with continuous curves through these points. It should, however, be stressed that these curves are
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merely introduced as guides to the eye and are nof meant to imply the existence of any general
functional relation between the quantities plotted.

(i1) The asymmetric limits

Some important general observations based on the present results are that the fine detail in the
1(£) curves (see figures 9a, 104, 114, 12a and 134) disappears, as £ is varied from the symmetrical
case to the asymmetric limits (see figures 94, 1056, 115, 12 and 135), and that the /(£)-curves for
imperfect crystals tend to approach the corresponding perfect-crystal curve as f— + 1. For
integrated reflectivity data, an extremely strong general observation based on the present results
(see figures 9¢, 107, 11 g, 12g and 13g) is the universal trend yext — 0 as | 4] — 1, for all imperfect
crystal cases studied, which confirms the postulate of Mathieson (1976, 1977 ). Moreover, in each
case, the trend to the kinematical limit is via an asymptotic approach to the dynamical-theory
(perfect-crystal) result (as discussed in WII). This is an important finding and opens the way for
extrapolation of experimental results via dynamical theory to derive extinction-free values of
structure factors (Mathieson 1976, 19776, 1979a; WII). The universal nature of these results
means we do not have to discuss them in each of the separate cases given below.

(¢) Specific observations
(i) Variation with configuration

As discussed in § 8 (i), certain features of the calculated results for a given configuration or
path are characteristic of that particular configuration or path, and certain features hold
generally. To help clarify the separation of the hodupicosian and general aspects of the problem,
we have investigated the diffraction properties of the g.m.b.m. for the following series of con-
figurations generated by choosing different strings of random numbers.

Configuration 1 is the standard or reference configuration used in the present work and is based on a
given string (say string 1) of random numbers, independent of the particular values of 3, #, op
and o,.

Configurations 2 and 3 involve sampling different configurations of bot4 the tilt and shift distribu-
tions by using random number strings 2 and 3.

Configurations 4 and 5 involve using random number strings such that the tilt component of the
configuration is the same as for configurations 2 and 3, respectively, while the shift component is
the same as for configuration 1.

Configurations 6 and 7 involve using random number strings such that the shift component of the
configuration is the same as for configurations 2 and 3, respectively, while the tilt component is
the same as for configuration 1.

Observations and comments on variation of results with configuration. Figure 10 consists of a tableau of
graphs depicting the variation of diffraction properties with: block-size, #, block-tilt spread, o,
block-shift spread, o, and asymmetry parameter (1 — 2)%, for various configurations. The salient.
features of these results are as follows.

Figure 10a. For f# = 0, the positions of the peaks in the intensity profile/, (£), are essentially the
same for all configurations considered, but the relative magnitude of the peaks varies quite
drastically from one configuration to another. The results thus imply a well-defined ensemble-
average structure for /(£) containing peak details characteristic of the g.m.b.m. parameters 7,
op and o.

23 Vol. 299. A
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symmetric Bragg case, f = 0 asymmetric Bragg case, (1—/42)% = 0.3
intensity profiles along the surface
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F1cures 10 (a—f). For descriptions see opposite.
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extinction against block shift for various shift configurations
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the symmetric case and a representative extremely asymmetric case. All results are for fi, = 0.2, 3 = $n
and £ = 0.

Figure 10b. For the extremely asymmetric case, the detailed structure in the 7(£) curves has
disappeared and they smoothly follow the perfect-crystal result for all configurations considered.

Figure 10¢. For the symmetric case, significant dependence on configuration is only shown for
intermediate values of 7, since for # small, individual mosaic-block rocking curves of angular
width o overlap (i.e. o7 2 o), and yext is insensitive to oy (type II secondary extinction in the
Zachariasen (1967) classification scheme for secondary extinction) while, for 7 larger, primary
extinction is dominant and this is not affected by the tilt and shift configurations of the blocks.

Figure 10d. For the extremely asymmetric case the results for small 7 are relatively independent of
configuration for the same reasons as given for figure 10¢. However, for large 7 the results in the
extremely asymmetric case are complicated by the fact that different configurations involve
different effective asymmetry angles, and this effect is significant in the extremely asymmetric
régime.

23-2
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symmetric Bragg case, f = 0 asymmetric Bragg case, (1—£2)% = 0.3

intensity profiles along the surface
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Ficures 11 (a—f). For description see opposite.
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extinction against asymmetry jfor various values of block size
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Ficure 11. Variation of diffraction properties with block-size fin the general mosaic block model in both the sym-
metric case and an extremely asymmetric Bragg case. All results are for ji, = 0.2, 03 = tn and £ = 0.

Figure 10e. For f# = 0, the extinction factor is relatively insensitive to tilt distribution for small
values of op because o, < 0, and all blocks are effectively diffraction coupled. However, as o
increases, yext becomes quite sensitive to the particular distribution of tilts, although a well-
defined (primary extinction) limitis attained as o, — co (see also discussion of figures 10¢and 10¢).

Figure 10f. For the extremely asymmetric case, similar results to those for figure 10¢ obtain, except
that the sensitivity to tilt distribution is less severe and the primary extinction limit is effectively
zero.

Figure 10g. For f = 0, yextis insensitive to shift configuration for small o, but shows increasingly
large fluctuations in magnitude as o, becomes large.

Figure 104. For the extremely asymmetric case, gext is insensitive to shift distribution for all o.

Figure 104. It can clearly be seen that the sensitivity of zext to configuration vanishes in the trend
towards the asymmetric limits. The vanishing of sensitivity to a particular configuration occurs at
almost the same value of f as that at which yext asymptotically approaches the perfect-crystal
result.

The point marked by a square in figure 10: denotes the average value of yext, for f = 0,
obtained by averaging over 10 distinct configurations, and the error bars denote the corre-
sponding sample standard deviation.

(ii) Variation with block-size

Figure 11 consists of a tableau of graphs depicting the variation of diffraction properties with
block-size, #. Although some of these results were presented in an earlier work (WII) and a
preliminary discussion given there, they are all included here for the sake of completeness. The
salient features of these results are as follows.

Figure 11a. For # = 0 and large £ and I(£) curves (i.e. for = 0.5 and 7 = 1) initially follow the
perfect-crystal result (/ = o) but, as § increases, detailed structure in the curves appears. The
smoothly varying dynamical Pendellosung fringes characteristic of highly perfect crystals are
not evident in either of these cases. For small 7 (say, # = 0.1), the curves are very oscillatory and
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lie close to the kinematical-approximation result (7 = 0, op = 00, and o, # 0). Fine structure in
the I(£) curves appears with a spatial frequency characteristic of the block size. Individual values
of I(£) exceed the kinematical value in some cases; this is a consequence of treating the scattering
problem coherently (similar to occurrence of bright spots in laser speckle patterns, see, for
example, Smith 19%77).

Figure 11b. For the extremely asymmetric case, (1 —£2)% = 0.3, virtually all fine structure in the
I(£) curves has disappeared and the curves for small block-size (/ = 0.1 and 0.5) lie close to the
values for a perfect crystal.

Figure 11¢. Plots of extinction against reduced block size, 7, = £/(£ + 1), for # = 0 show that for
small block-size and small spread in block tilts (i.e. small o), the level of extinction is almost
independent of o,. This is consistent with the notion of wide rocking curves for small mosaic
blocks. More specifically, if o is the width of the rocking curve for a block of size #, one expects
little variation of yext with o, for op $ 0 (corresponds to low primary extinction and type 1T
secondary extinction in the classification scheme of Zachariasen (1967)). For large o, one expects
almost no secondary extinction and almost pure primary extinction to be present. In figure 11¢,
this case is approximated by the curve o, = 10 (see also figure 14).

For the intermediate region in #, o is sufficiently small such that not all rocking curves for
blocks overlap and extinction is a mixture of primary extinction and secondary extinction
dominated by the mosaic block distribution, i.e. o; < op (type I secondary extinction in
Zachariasen’s (1967) classification scheme).

For large #, oy approaches the perfect-crystal rocking curve width and there is little secondary
extinction and almost pure primary extinction.

A further investigation of figure 11¢ is given in § 9.

Figure 11d. For the extremely asymmetric case, the results for variation of #5., with 7 are similar
to those in figure 11¢, except that calculated curves for all values of o}, coalesce for small 7,
presumably because of the increased width of the rocking curve in the extremely asymmetric
régime (see table I in WI for the perfect-crystal case). Note that yext tends to different limits
for each oy value, as # —> o0, because the infinite blocks will be at different angles to the surface in
each case, thus altering the effective asymmetry angle.

Figure 11e. For = 0, large values of the shift-distribution width, o, and small 7, the level of
extinction appears largely independent of o,. However, if o, is small but non-zero, then yexs
initially tends towards the perfect-crystal value as # — 0, before finally tending to zero. This is a
consequence of the behaviour of f; discussed in § 8 (a).

The behaviour of yex; in the intermediate region of 7 shows that the precise value of o, affects
the value of yext to a small but significant degree.

In the trend towards a single perfect-crystal block (i.e. # - 00), the value of o, becomes
irrelevant since intensities are not affected by uniform translation of the whole system (see § 3 (a)).

Figure 11f. For the extremely asymmetric case, similar results to those obtained in figure 11¢ are
found, except that the only region where any sensitivity to o, appears to occur is for 7 - 0.
(iii) Variation with block-tilt spread o

The salient features of figure 12 depicting the variation of diffraction properties with the
standard deviation of the block-tilt distribution, o, are as follows.
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Figure 12a. For # = 0, the intensity profile /(&) shows peaks at positions in & characteristic of the
block size £, with increasing background value of I(£) as o7, increases. The most spiky /(§) curve
occurs for the lowest value of op. These results are consistent with the picture of secondary
extinction as essentially arising from one block, with nearly 100 9, reflectivity in a small angular
range, ‘shadowing’ other blocks further along the path of the incident beam.

Figure 12b. For the extremely asymmetric case, the /(&) curves for all but the largest value of o
smoothly follow the perfect-crystal result. The I(§) curve for oy = 10 still lies close to the kine-
matical result, presumably because the degree of asymmetry is not sufficiently great to cause
overlapping of the rocking curves due to asymmetry (see also § 9 (¢)). All fine detail has been lost
from the I(§) curves.

Figure 12¢. For # = 0 the extinction factor decreases, although not necessarily monotonically,
from a large value to a small constant value, as o, increases from zero to an indefinitely large
value. The asymptotic trend towards a constant value at large o, especially apparent for Z = 1,
is indicative of the virtual elimination of secondary extinction due to the increased angular
spreading-out of the blocks and the attainment of a pure primary-extinction limit (see also the
discussion of figure 12¢and § 9 (ai)). It may be noted that yext does not equal the perfect-crystal
value even when oy = 0, because o, # 0.

Figure 12d. For the extremely asymmetric régime, the primary extinction limit is essentially at
yext = 0 for all the values of £ considered.

Figure 12¢. For # = 0 the extinction factor starts off at a large value and ultimately decreases to a
given constant value as o increases from zero to an indefinitely large value. The uniform attain-
ment of a constant value, independent of o, further provides evidence of the attainment of a pure
primary-extinction limit for indefinitely large op.

Figure 12f. For the extremely asymmetric case, the primary extinction limit essentially occurs
when gext = 0, and so is independent of o.

(iv) Variation with block-shift spread o,

The salient features of figure 13 depicting the variation of diffraction properties with the
standard deviation of the block-shift distribution, o, are as follows.

Figure 13a. For f§ = 0, the positions of the peaks in the intensity profile /(£) are essentially inde-
pendent of o, while the magnitudes of the peaks are affected by the value of 0. This is consistent
with a picture of o as affecting the relative phasing of different diffracted beams inside the
crystal, without altering the essential geometrical conditions for diffraction.

Figure 13b. For the extremely asymmetric case, all fine structure in the intensity profile has
disappeared, and all curves lie closer to the perfect crystal result (o, = 0 and o, = 0) than the
kinematical result.

Figure 13¢. For the symmetric case, # = 0, one can see that for large and intermediate values of 7
the value of ¢« is largely independent of o, which is reasonable, since for such values of £ one
expects primary extinction to provide the dominant contribution to zext. One may also note that
for these valucs of Z, the value of yextoscillates rapidly for large o, since only a few blocks contri-
bute to the diffraction, and the relative phases may change drastically with o
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symmetric Bragg case, f# = 0 asymmetric Bragg case, (1—£)% = 0.3
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Figure 12 (a—f'). For description see opposite.
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extinction against asymmetry for various values of tilt

- () %=0,0:=0
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Ficure 12. Variation of diffraction properties with block tilt spread o, in the general mosaic block model in both
the symmetric and extremely asymmetric Bragg case. All results are for fiy = 0.2, 05 = yn and £ = 0.

For small # one can see that extinction rises rapidly as o, — 0. This is explained by the fact that
the end effect of structurally disordering a crystal by pure tilting becomes small when ¥ is small,
as was discussed in § 8 (a). For small #, the fluctuations in yey; for large o are not as great as for
large ¢, probably because there are a large number of blocks with broad rocking curves contri-
buting to the scattering, so that an averaging effect is occurring.

Figure 13 d. For the extremely asymmetric case, the results are similar to those found for £ = 0,
except that the fluctuations for large # and o are no longer present. This is consistent with the
argument that for the extremely asymmetric case the level of interaction (i.e. g~1, defined in
WI) goes to zero, and the angular acceptance or divergence characteristics cf the blocks
become broad, so that a large number of blocks contribute to the integrated reflectivity (see also

§10(c)).

Figure 13¢. For the symmetric case and small oy, one can see that there is a small reduction in
(secondary) extinction as o, increascs from zero, with the possibility of rapid fluctuations
occurring in zext as o, becomes large. On the other hand, for intermediate and large values of
op, the level of extinction (mainly primary) is largely independent of o. This is reasonable since
o can have no effect on the level of primary extinction.

Figure 13 f. For the extremely asymmetric case virtually no dependence of yext on o, occurs for
any of the values of o, considered, and no rapid fluctuations occur for large o. Thisis presumably
due to the fact that large numbers of blocks contribute to the scattering, and relative phasing of
blocks is not important.

9. EXTINCTION
(a) Primary and secondary extinction

The term ‘extinction” was introduced into the X-ray diffraction context by Darwin (1922,
p. 803) to describe ‘the diminution in the reflected beam due to the fact that when one part
of a crystal has reflected some of the radiation, there is less for the parts behind it to reflect’
(sec also Bragg et al. 1926). Essentially, the term extinction relates to the failure of the kinematical

24 Vol. 299. A
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F1cures 13 (a-f). For description sec opposite.
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extinction against asymmetry for various values of block size
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Ficure 13. Variation of diffraction properties with block shift spread o in the general mosaic block model in both
the symmetric and extremely asymmetric Bragg case. All results are for i, = 0.2, 0 = $n and £ = 0.

approximation to describe elastic scattering, from real crystals, due to the occurrence of multiple
(and even single) Bragg diffraction.

In describing the diffraction process in real crystals, Darwin subdivided the phenomenon
of extinction into primary extinction, involving diffraction in an essentially perfect-crystal
(coherent) domain (‘intrablock scattering’), and secondary extinction, involving the effect of
diffraction in one perfect-crystal domain on the scattering from a (incoherent) perfect-crystal
domain behind it (‘interblock scattering’). The concepts of primary and secondary extinction
would seem to be closely tied to a mosaic-block-like picture of an imperfect crystal, where the
state of the crystal is perfect over small volumes, but highly distorted on a large scale. It is by no
means obvious whether the terms primary and secondary extinction have a useful meaning for
describing the structural state of an arbitrary real crystal. In practice, for diffraction from a real
crystal, one would expect a clean separation into the two types of extinction to be impossible.
Nevertheless, within the framework of the g.m.b.m., it seems possible to use the terms primary
and secondary extinction meaningfully, and it is perhaps worthwhile to explore this aspect of
the problem.

(1) Primary extinction

As was pointed outin the discussion of figures 10¢, 12¢and 12¢, the extinction factor, yext, tends
to a well-defined limit as oy, — 00, strongly suggesting the attainment of a pure primary-extinction
condition in the diffraction experiment. To explore this limiting condition further, we have
presented curves of yextagainstry, for o, = 0.5and o, = 1and 100, in figure 14. From the results
given earlier, it is reasonable to interpret the yext curve for o, = 100 as a good estimate for the
pure primary extinction curve in the symmetric Bragg case, at least for intermediate and large
values of #, since for these values of # the mosaic-block rocking curves are unlikely to overlap.
The effect of a large degree of misorientation of the blocks may be expected to put a severe strain
on the accuracy of the numerical solution to the T-equations. For this reason, we have also
included values for the o, = 100 case obtained with half the normal spacing in £ (solid points in
figure 14), to give some feeling for the accuracy of the numerical solution.

In addition to the results obtained from the T-equations, we have presented in figure 14 results

24-2
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for the extinction factor of a crystal, assuming pure primary extinction, obtained by using
Darwin’s (1922) formula (his equation (6.13); see also Zachariasen (1945), equations (3.167)—
(3.169)):

Q' = Qtanh (4)/A4, (9.1)

for the integrated reflectivity per unit path length, where the path length parameter is given by

A- 14 p%tan20\% 1 e2/\K|FH|t0=(1 +,6’2tan2.6‘)% I
1—-p42 sinf  mc? 1-p2 sin§”

We have considered two values of the plate-thickness parameter £,, namely ¢, = £and ¢, = ¢sin 6.

(9.2)

10
’_
0.8}
0.6
E = pure
S secondary
extinction
04
0.2
L 1 1 J
0 0.2 04 0.6 0.8 1.0

= ?7(?+ 1)
Ficure 14. Plot of extinction factor y,, against block size: a, A moderately disordered mosaic crystal, namely the
g.m.b.m. with o3, = 1, ¢, = 0.5 (---+). b, A highly misoriented mosaic crystal, namely the g.m.b.m. with
0, = 100, o, = 0.5 (——-0). This curve essentially represents the form of pure primary extinction in the
gm.b.m. for F, = 0.2, O = §n and # = 0. ¢, Same case as for b, but with half the grid-spacing in the
numerical solution procedure (®). 4, A mosaic crystal with shift spread o, = % 0% and 0% = 0.5 (---x ). This

curve tends to a pure secondary-extinction limit as £ -> 0. ¢, Predictions of the Darwin result (equation (9.1))
for pure primary extinction (and Ji, = 0) with , = £ and f, the corresponding curve with ¢ = £ sin 6}, (
Unless otherwise stated, all results are for fi, = 0.2, 6 = $nw and £ = 0.

The pure primary extinction factor for the crystal is calculated by replacing @ by Q' in (4.14),
where Q' is given by (9.1), and the extinction factor by (4.15), so that

7o (Darwin) = 1 —tanh (4)/4, (9.3)
which is independent of z,. It can be seen from figure 14 that the result for a crystal with pure

primary extinction calculated in the Darwin approximation, with the obvious identification
ty = £, does not agree at all well with the numerical result obtained via the T-equation. The value
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of yext obtained from the Darwin formula is much larger than the numerical result. This may be
traced to the fact that the Darwin result treats the diffraction from blocks via the theory for an
infinite parallel plate of thickness ¢, in the case of negligible absorption.

On the other hand, if one interprets the quantity £,(1 + #2tan20)%/(1 — 2)¥sin 6 as the effective
linear dimension of a crystal block (see Zachariasen 1945, p. 135), one has for the symmetrical
case the relation ¢, = #sin@ (or equivalently 4 =¢). The resulting plot of &2 (Darwin) is
shown in figure 14, where it can be seen that this choice for ¢, leads to reasonably close agreement
with the corresponding numerical result for #25™, at least for small and intermediate values of 7.
At large 7, the effect of absorption inside each block becomes significant and the validity of the
assumptions underlying the simple Darwin treatment is expected to break down (see, for
example, Becker 1977).

As an adjunct to the present discussion of primary extinction, one may note that while z25™ is
clearly dependent on the parameters iy, £, 0y, K and A, it is independent of o and o.

(ii) Secondary extinction

It follows by definition that any additional contribution to the total extinction in excess of that
contributed by primary extinction is due to secondary extinction. While primary extinction is
relatively easy to discuss conceptually, secondary extinction is much more difficult. In particular,
the level of secondary extinction in the g.m.b.m. clearly depends in general on all three para-
meters: £, oy, and o,,. Moreover, it is clear that the level of secondary extinction is, in general,
affected by the level of primary extinction. The method by which one could attain a well-defined
pure secondary-extinction state is perhaps not obvious within the present formulation of the
g.m.b.m., although such a state would be attained for # -> 0 with

oo(f) =tioy, (9.4)

where o9 is independent of #. The choice (9.4) for o, was arrived at by requiring a constant
standard deviation in the field-point displacement (i.e. «, given by (5.4)) per unit length in the
crystal due to block-shift alone. The results for (9.4) with ¢ = 0.5 and o, = 1 are presented as
crosses joined by a dotted curve in figure 14. From these results it can be seen that for large ¢ there
islittle dependence on the form of o, which is reasonable since primary extinction is predominant,
while for small 7 one can see that #ext tends to a non-zero limit as £ > 0. In this latter case,
primary extinction is zero and one has pure secondary extinction.

In addition to the behaviour in the limit # - 0, one knows that the levels of secondary extinc-
tion must go smoothly to zero as £ —> oo, since the type of extinction is gradually becoming more
nearly primary as one approaches the perfect-crystal limit (see figure 14).

It is not obvious how one may provide a rigorous mathematical approach to the calculation of
the level of secondary extinction in the diffraction from an imperfect crystal in which primary
extinction is also occurring. Perhaps an easier approach is to define the level of secondary extinc-
tion via the commonly adopted relation (see, for example, Becker & Coppens 1974, p. 133)

ptot psec pprlm

o] — ot — _ ,80c prim 9.5
Pxin  Pxin pkm “Yext ( /u\t) ( — Yext ) ) ( )

where integrated reflectivities without superscripts refer to the entire crystal, while those having
the superscript b refer to values calculated for a single mosaic block.
24-3
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(b) Extrapolation to the asymmetric limits and the determination of
extinction-free structure-factor values

The theoretical results for imperfect crystals presented in §§ 7 and 8 lend very strong support to
the approach suggested by Mathieson (1976, 1977 5) for eliminating the effect of extinction from
measured intensities or structure factors, by systematic extrapolation of such data to the asymmetric
(extinction-free) limits. Moreover, from the present work, one has the very useful result that the
most appropriate mathematical form for the extrapolation of integrated reflectivity data to the
asymmetric limits is the perfect-crystal or dynamical-theory result (see also WII), even though
the limit itself is the kinematical value.

Practically, an extinction-free determination of a structure factor, from integrated reflectivity
data at a series of values of f, could proceed by first using that data to calculate, via standard
dynamical theory for a perfect crystal (see, for example, Hirsch & Ramachandran 1950; Wilkins
19784, b), a measured value for the structure factor, say Fy,q,5(£) (or, more correctly, a measured
value for the parameter fi,, or equivalently g,, both defined in equations (3.17), as a parameter of
this form actually occurs in the dynamical theory, rather than ¥ alone). Secondly, the values of
Feas(f) could then be extrapolated, as, say, a function of (1 — 42)3, to zero, and the limiting value
of Fpas, 52y FY eas, would in principle be free from extinction.

A current limitation on the absolute accuracy of the above method for determining structure-
factor values is the fact that one really determines only, say, 7,, and this is essentially the ratio of
the linear absorption coeflicients, z, to the modulus of the structure factor |Fyg|, and g, is not
accurately known for most substances. Nonetheless, one would certainly have extinction-free
relative values for structure factors.

An interesting alternative way of using extrapolation to the asymmetric limit would be to use a
known value of |Fy| for a system to determine z, from the extinction-free measurement of g, for
that system. Such a method weuld avoid one of the main difficulties in conventional determina-
tions of p,, namely the accurate measurement of crystal thickness.

From the present results, it can be seen that the task of extrapolating measured data to obtain
an extinction-free estimate for g is facilitated by working with crystals that are as nearly perfect
as possible. Thus, one requires accurately flat, nearly perfect ciystal surfaces for study. One
approach to the preparation of such surfaces would be to progress through an ever diminishing
cycle of fine polishing, followed by mild etching of the surface, or preferably to use a chemical
polish.

(¢) Nature of the diffraction process in the approach to the asymmetric limits

From the results presented in figures 9-13, two very striking and apparently universal effects
occur as the degree of asymmetry tends to the limits:

(i) the intensity profile, I(£), becomes smoothly varying with £, and the values of I(£) become
independent of the precise mosaic structure;

(ii) theintegrated reflectivity tends asymptotically to the value calculated in the conventional
dynamical theory for a perfect crystal, and this result in turn tends to the kinematical value at the
asymmetric limits.

Because of the form of the T-equations chosen for solution, it is not practical to obtain a detailed
picture of the diffraction process inside the crystal as a function of angle. However, from a know-
ledge of the diffraction behaviour of perfect-crystal scattering volumes in the approach to the
asymmetric limit (Wilkins 19784, see in particular the summary of the effects of asymmetry
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given in table I) and from general principles, such as the Liouville theorem applied to the spatial
and angular spreads of the beams (Albertini et al. 1977), it is possible to make some reasonable
guesses as to the underlying physical factors leading to the effects (i) and (ii) described above.

First, it should be noted that the degree of asymmetry has a pronounced effect on the relative
cross sections of the incident and diffracted beams (see figure 1). This effect was first noticed in
X-ray powder diffraction effects by Stephen & Barnes (1935, 1936), who found that powder
diffraction lines ‘making a small angle with the surface of the specimen are particularly sharp,
but become broader as the angle between the diffracted beams and the surface of the specimen
increases’ (i.e. decreasing positive asymmetry), although primacy for observing this effect is
often mistakenly given to Fankuchen (1937). In the negative asymmetry case, a corresponding
spatial expansion of the diffracted beam occurs relative to the incident. In each case, the effect is
essentially geometrical in origin (see figure 1). Concomitant with a spatial expansion (or con-
traction) of the beam in direct space is a corresponding decrease (or increase) in the angular
divergence of the diffracted beam, as the asymmetry parameter, £, tends to the negative (or
positive) asymmetric limit. For a perfect crystal, a simple geometrical description of this effect
can be given in terms of the dispersion surface (see, for example, Schwarz & Cohen 1977, p. 502),
and is analogous to the foreshortening effect in direct space. The relation between the two effects
may be viewed as a manifestation of the Liouville theorem (Albertini ef al. 1977). It should be
noted that the condensation effects in direct and reciprocal space are essentially geometric in
origin and so should be independent of the state of the crystal.

Secondly, it is known from the perfect-crystal case studied earlier (Wilkins 19784) that the
level of interaction g=* ~ 4l,,./t1P5™, where £, is the absorption length in the absence of diffraction,
while f25™ is the extinction length in the absence of absorption, goes to zero in the asymmetric
limits. That is, the distance between successive scattering events is, on average, large compared
to the absorption length. Moreover, for imperfect crystals, one expects the level of interaction for
a given crystal at a given value of f to be even lower than for the corresponding perfect crystal.

Thirdly, one also knows from the perfect-crystal case that in the limit # — — 1 the rocking curve
width becomes indefinitely large and the maximum reflectivity goes to zero, while for the limit £ — +1
the angular divergence of the diffracted beam becomes indefinitely large, and the maximum
reflectivity also goes to zero.

If one assumes that similar diffraction effects also occur for an imperfect crystal, then for the
case f# — — 1 one may interpret the asymptotic convergence of the integrated reflectivity for an
imperfect crystal to that for perfect a crystal as arising because the level of interaction, g%, is going
to zero, so that the probability of multiple scattering within a block is going to zero (i.e. primary
extinction in the conventional sense is going to zero), together with the fact that the rocking curve
width is such that each block is diffraction-coupled to every other block in the scattering path (i.e.
op > op). In the secondary extinction classification scheme of Zachariasen (1967), this situation
corresponds to type II secondary extinction, although here we see that, in the trend to the
asymmetric limit, this ultimately corresponds to primary extinction for the whole crystal treated
as one block.

For the case f — +1, the level of interaction also goes to zero, but it is the angular divergence
range of the scattering function for a block which becomes indefinitely large, leading to diffraction
coupling between all blocks in a given scattering path (see figure 15). Conventionally (see Darwin
1922; Zachariasen 1967; Becker & Coppens 1974), the scattering function for a block is calcu-
lated for a given angle of incidence, but integrated over all angles of scattering (corresponding to
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a rocking curve), so that, in the treatment of diffraction {from an imperfect crystal, one ignores
the spreading-out of the two beams as they pass through the crystal (see, for example, Darwin
1922, p. 818). Thus, the form of secondary extinction exhibited in the trend g - + 1 does not fit
into the conventional classification scheme, although it may logically be called type ITI secondary
extinction. In the limit # - + 1, secondary extinction of type II also becomes equivalent to
primary extinction for the whole crystal treated as one block.

The fact that the angular divergence or acceptance characteristic of each block is becoming
indefinitely large would also explain why the intensity profile becomes smooth as || - 1.

incident (a) incident (b) 1
plane wave / / 1 3 plane wave / 2
P , 1, ///// _
Z D) 2", — — 1
N~ X 3 )
X N A ——— =
N A ,%1:
0‘(\ _ W PO IR . Y —
N 2 — 1’ E
1 '
3' 3! 2

Ficure 15. Diffraction process in the extremely asymmetric Bragg case f - * 1 for (a) a perfect crystal and () an
imperfect crystal, in each case showing angular spreading-out of the diffracted beam. The scattering series
0-2-2 for the perfect crystal is different from the corresponding series 0-3—1 for the imperfect crystal, but,
for an approximately uniform angular response function for the diffracted power in the crystal, the net
diffracted intensity will be approximately equal in each case. The form of interblock coupling, arising via
angular spreading-out of the diffracted beam, is here termed secondary extinction type III.

(d) Relation of the present work to theories for correcting for the effect of extinction

The thrust of the present work in regard to the extinction problem is in line with the philosophy
recently expounded by Mathieson (1979 @) involving elimination of extinction by making a series
of measurements under controlled variation of adjustable physical parameters, followed by appro-
priate extrapolation of the data to a well-defined extinction-free limit. This approach, however,
involves more extensive data collection than is usually made. For experiments where only a small
number of measurements of each reflexion are made, or where the experiment has not been
designed to allow a suitable extrapolation procedure, there is still a need for theories, albeit
approximate, for correcting for the effect of extinction (see, for example, Darwin 1922; Werner &
Arrott 1965, Werner et al. 1966; Zachariasen 1967; Becker & Coppens 1974; Kato 1976 b; Becker
1977), since the task of numerically solving the T-equations for an imperfect crystal is too time-
consuming to be incorporated practically within a cycle of a conventional least-squares
refinement routine. Moreover, there is the additional difficulty that direct comparisons between
theory and experiment by using the T-equations would seem to require ensemble averages
of both the numerical calculations and the experimental data, to overcome the problem of
hodupicosity (see § 8(51)).

Work of the present type may, however, provide a very valuable means for testing the accuracy
of different extinction theories for a wide variety of imperfect crystals and experimental conditions.
That conventional extinction theories can only follow to a limited extent the predictions of the
T-equations for the g.m.b.m., follows from the fact that the g.m.b.m. is described by three
independent parameters (¢, op and o), while conventional extinction theories have at most two
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parameters. In particular, it may be noted that Darwin-like theories involve parameters of the
typef and o, but do not have a parameter resembling the block-shift spread, o,. This parameter
describes the degree of correlation (coherence) between the origins of different blocks, whereas
the Darwin-like theories, involving intensity-coupling equations, effectively assume no corre-
lation (incoherence) between the origins of different blocks.

(i) Types of extinction

The results presented here demonstrate that the type of extinction present is, in general, not
just a function of the structural state of the crystal, but is also dependent on the parameters
defining the diffraction experiment, such as g, A, K, x4, and 63. Thus, one should refer, for
example, to a type IT experiment, rather than to a type II crystal (cf., for example, Cooper 1979;
Cooper ¢t al. 1979).

It may also be pointed out here that the Zachariasen (1967) classification scheme for extinction
into either types I or IT was found inadequate in the discussion of § 9(d). The reason for this
inadequacy was the failure of that scheme to consider the degree of spreading-out of the diffracted
beam in the crystal, and this suggests that the similar assumption made by Darwin (1922, p. 818)
and his followers in deriving their extinction theories may not always be valid.

10. CONCLUSIONS AND PROSPECTS

The present work provides strong evidence for the universal nature of the asymmetric limits
as limits where the diffraction behaviour is independent of the particular microstructural state of
the crystal specimen. Moreover, it has been found that, for a large class of imperfect crystal cases,
the diffraction quantities I(£), p and yext all tend asymptotically to the dynamical values appro-
priate to a single perfect crystal as the asymmetric limits are approached, and that these quantities
in turn tend to the kinematical values at the limit (see also Wilkins 1980). Although the present
results were derived for the case of zero anomalous dispersion (i.e. # = 0), our previous work on
perfect crystals (WI) suggests that the universal nature of the limit also obtains for # # 0.

The methods used in the present work offer possibilities for

(i) investigating the nature of other extinction-free limits for imperfect crystals (see
Mathieson 1976, 19774, b, 19794);

(ii) testing the accuracy of approximate extinction theories (see, for example, Kato 19764, b,
1979, 1980);

(iii) analysis of section topographs from highly imperfect crystals by comparing ensemble-
averaged data and numerical results;

(iv) aiding in the design of X-ray and neutron optical devices (see, for example, Hart 1971),
including the use of imperfect crystals (see, for example, Hart & Rodrigues, 1979);

(v) treating the problem of dynamical scattering from surfaces and layer structures (see,
for example, Betekhtin et al. 1978);

(vi) studying the wavefield inside imperfect crystals, for example, to calculate fluorescence
yields (see, for example, Kruglov & Shchemelev 1978);

(vii) treating arbitrarily shaped imperfect crystals.

I am extremely grateful to Dr A. McL. Mathieson for arousing my interest in this study and for
continued advice and encouragement in its exploration. I am also grateful to Mr A. F. Moodie for
helpful discussion, and to Dr S. L. Mair for her comments on the manuscript.
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Note added in proof, 10 October 1980. Recent measurements of Bragg-case section topographs
for perfect crystals (Lang, A. R. & Mai, Z. H. 1979, Proc. R. Soc. Lond. A 368, 313) and uni-
formly bent crystals (Papoyan, A. A. Aladzhadzhyan, N. M. & Bezirganyar, p. 8, 1980, Sov.
phys. crystallogr. 25, 225) appear consistent with the calculations reported in §7.
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